Absence of TRAM restricts Toll-like receptor 4 signaling in vascular endothelial cells to the MyD88 pathway.
نویسندگان
چکیده
Mammalian cells respond to bacterial lipopolysaccharide (LPS) through a cognate receptor: Toll-like receptor 4 (TLR4). The signaling pathways, which link TLR4 to the proinflammatory transcription factor nuclear factor kappaB (NF-kappaB), occur through the intracellular docking proteins MyD88 and Trif. We hypothesize that unlike antigen-presenting cells, vascular endothelial cells (ECs) lack the Trif protein TRAM and are therefore incapable of eliciting Trif-dependent immune responses to LPS. Stimulation of wild-type mice with LPS leads to the activation of NF-kappaB in ECs and macrophages in vitro and in vivo. In contrast to macrophages, LPS did not activate endothelial NF-kappaB or NF-kappaB-dependent genes in MyD88(-/-) mice, suggesting the absence of a functional Trif pathway in vascular ECs. Indeed, the Trif-dependent gene cxcl10 was not expressed in ECs after LPS stimulation. This correlated with diminished expression of the Trif accessory TIR protein TRAM in ECs. Overexpression of TRAM cDNA in ECs reconstituted LPS-induced Trif-dependent NF-kappaB activation and cxcl10 promoter activity. The functional absence of TRAM in vascular ECs restricts TLR4 signaling to MyD88-dependent pathway. This is in contrast to macrophages, which respond to LPS via both Trif- and MyD88-dependent pathways. These findings indicate that vascular ECs do not express the Trif-dependent gene subset. This implies that these genes may be dispensable for the endothelial response to bacterial infection and play no role in the endothelial contribution to the development of atherosclerosis.
منابع مشابه
Signaling Flux Redistribution at Toll-Like Receptor Pathway Junctions
Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR) 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopol...
متن کاملTrif-related adapter molecule is phosphorylated by PKC during Toll-like receptor 4 signaling
PKC has been shown to play a key role in the effect of the Gram-negative bacterial product LPS; however, the target for PKC in LPS signaling is unknown. LPS signaling is mediated by Toll-like receptor 4, which uses four adapter proteins, MyD88, MyD88 adapter-like (Mal), Toll IL-1R domain-containing adapter inducing IFN(Trif), and Trif-related adapter molecule (TRAM). Here we show that TRAM is t...
متن کاملLPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF
Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN(TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NFB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN/...
متن کاملLPS-TLR4 Signaling to IRF-3/7 and NF-κB Involves the Toll Adapters TRAM and TRIF
Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF)-related adaptor molecule (TRAM) is the fourth TIR domain-containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-kappaB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to...
متن کاملLPS-TLR4 Signaling to IRF-3/7 and NF- k B Involves the Toll Adapters TRAM and TRIF
Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN(TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NFB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 98 9 شماره
صفحات -
تاریخ انتشار 2006